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Abstract—The energy equation for the laminar incompressible flow induced by a large spinning disk is solved
numerically for the 3-dim. temperature field generated by a diametrical, sector-shaped heat source located at
the disk surface which is otherwise adiabatic. The heating is assumed to be sufficiently mild so as not to
disturb the velocity field. Consequently, natural convection effects, as well as viscous dissipation heating, are
neglected. The simple overrelaxation technique may be applied to obtain solutions for any specified radial
and/or tangential distributions of surface temperature or heat flux. Results obtained for various Prandtl
numbers and source angles indicate the existence of a conduction dominated region at low Reynolds
numbers and a convection dominated region at high Reynolds numbers. Correlation between the local
surface heat flux and the tangential wall shear stress is also given.
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NOMENCLATURE

constant;
constant;

, C;, Cyy, Cry, Cy, constants;

specific heat at constant pressure;
constant;

fluid density;

dimensionless radial velocity ;

tangential friction factor;

dimensionless tangential velocity;
dimensionless relative tangential velocity ;
Grashof number ;

dimensionless axial velocity ;

local and average heat transfer coef-
ficients, respectively;

fluid thermal conductivity;

constant;

local and average Nusselt numbers,
respectively ;

Prandtl number;

dimensionless axial temperature gradient
at the wall;

heat flux per unit area;

Reynolds number, wr?/v;

radial coordinate;

source outer radius;

local temperature;

characteristic temperature scale of the
heat source;

ambient temperature ;

radial velocity;

tangential velocity;

axial velocity ;

axial coordinate.

Greek symbols

Ps>
.
o
d)sl’
o
W,

v,

Ve
l//sh
Ve

Tw¢’

thermal diffusivity;

momentum boundary layer thickness;
thermal boundary layer thickness;
represents a small change;
dimensionless axial coordinate, z(w/v)' %;
dimensionless axial coordinate, z/(r.,);
dimensionless temperature ;
absolute viscosity ;
kinematic viscosity ;
dimensionless radial
rlw/v)'2;

dimensionless radial coordinate, r/r;
dimensionless source outer radius;
tangential coordinate;

source sector angle;

source leading edge angle;

source trailing edge angle;

coordinate,

dimensionless tangential coordinate,
¢/m;
dimensionless tangential coordinate,
?/by;

dimensionless source sector angle;
dimensionless source leading edge angle ;
dimensionless source trailing edge angle;
tangential wall shear stress;

disk angular velocity.

INTRODUCTION

HEeAT transfer from a rotating body is of major
importance in the analysis and design of turbo-
machinery, especially when high temperature fluids are
present. The rotating disk offers a simplified model
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with which more complex rotating components can
be examined. Due to the simple geometrical con-
figuration, analysis is considerably less involved than if
the actual components were considered.

Flow and heat transfer characteristics in the 3-dim.
boundary layer over a rotating disk have been studied
extensively. In the present work, a method is presented
to predict the heat transfer characteristics for a
generalized heat source at the disk surface.

The structure of the laminar flow field induced by
the rotation of a large disk in an infinite incompressible
fluid has been first established by von Karman [1].
Later it was improved numerically by Cochran [2].
This structure has been experimentally verified by
Cham and Head [3], Erian and Tong [4], and others.

Heat transfer from a rotating disk under laminar
flow conditions has been studied extensively for an
isothermal disk surface. Wagner [5] first established
the heat transfer from an isothermal disk into air (Pr =
0.72) as Nu = 0.335 Re®~. Millsaps and Pohlhausen
[6], using different methods, found that Nu = C Re®®
for 1 < Pr < 10, where C increases with Prandtl
number. Sparrow and Gregg [ 7] further examined the
effect of Prandtl number on heat transfer from an
isothermal disk, and found that Nu = C Re®*® is valid
for 0.01 < Pr < 10, where the constant also increases
with Prandtl number. Asymptotic relations were also
found between C and Pr at very high and very low
Prandti numbers.

Hartnett [8] solved the heat transfer problem from
a rotating disk with a power law radial temperature
distribution, (T — T ) = Br™, at Pr = 0.72 and found
that Nu = C Re®? with the constant becoming larger
with increasing m. Davies [9] proposed an approxi-
mate method to predict heat transfer from a rotating
disk with arbitrary radial temperature distribution by
applying the method of sources, i.e. the disk surface is
regarded as an assembly of concentric circular heat
sources forming the desired surface temperature distri-
bution. An integral equation was developed to predict
the heat transfer coefficient at the disk surface but was
valid only at large Prandtl numbers when the thermal
boundary layer was deeply embedded in the momen-
tum boundary layer. Recently, Jeng, DeWitt and Lee
{10] developed a unique analytical method to obtain
the temperature field and the rate of heat transfer from
an axisymmetric body in a forced flow field. The
method was applied to a finite rotating disk with or
without a free stream velocity and the results agreed
well with the calculations of Chao and Grief [11] for
the case of an isothermal disk. The method can also be
used for a disk with an axisymmetric step change in
surface temperature. Radial conduction was neglected
in all these analytical solutions.

Experimentally, Kreith, Taylor and Chong [12]
have fully investigated the heat transfer from an
isothermal disk and have found that Nu = 0.345 Re®*
for Pr = 072 under laminar conditions. Popiel and
Boguslawski [ 13] have determined the combined effect
of free and forced convection and have found Nu =
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0.33 (Gr + Re*)°*° on an isothermal disk at Pr =
0.71. Many other experimental works are available.

Most of the heat transfer work previously accom-
plished on the rotating disk is for an isothermal
surface. In most practical applications {a turbine
wheel, for example) temperature fields are axisym-
metric but depend on the radial direction. Recently,
Oehlbeck and Erian [ 14] solved the axisymmetric line
source problem.

The present work accommodates any radial and
tangential distributions of temperature or heat flux at
the disk surface which are symmetric about a disk
diameter, and, shows the effects of Prandt] number,
Reynolds number and conduction on surface heat
transfer coefficients from sources in the form of sectors
of varying angles. In addition to its usefulness as a
generalized 3-dim. problem, wherein heat transfer
coefficients can be obtained for localized heat sources
of arbitrary geometry (an image source about a disk
diameter must exist), direct correlation between the
local heat transfer coefficient at the source and the wall
shear stress is also derived.

ANALYSIS

The equations of motion for the flow due to a
rotating disk have been solved exactly by von Karman
[1] and the solution improved by Cochran [2]. Due to
their consideration of an infinite disk rotating in an
infinite fluid, similarity functions of the velocity, de-
pendent on a single similarity variable, were obtained.
These are defined as F(n) = w/or, G(n) = v/wr, and
H(y) = w/(vw)'? where 7 is the dimensionless axial
distance from the disk surface.

The introduction of a heat source at the disk surface
will generate a temperature field T{r, ¢, z} in its vicinity
due to convection and conduction. If one ignores
natural convection effects, significant errors will admit-
tedly be introduced at high relative source tempera-
tures and at very low Reynolds numbers, i.e. near the
disk center. However, in most practical cases, forced
convection is far more significant than free convection.
Therefore, we shall ignore natural convection effects in
this work which results in decoupling of the momen-
tum and energy equations. As a consequence, the
velocity functions, F, G and H, remain unchanged by
the introduction of heat sources at the disk surface.

Having established the flow field, we now consider
the energy equation in cylindrical coordinates which
rotate with the disk for steady, incompressible laminar
flow with constant fluid properties and neglecting
viscous dissipation. The equation for the temperature
is given by
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Generalized laminar heat transfer from the surface of a rotating disk

where
V=10 @r

and

bjor = G{n) — 1 = Gln).

In this work the disk surface is assumed adiabatic
except for a sector-shaped heat source diametrically
located on the surface as shown in Fig. 1. Therefore, the
source period is 7. In the radial direction the tempera-
ture gradient at the disk center must vanish due to
symmetry, and, at large r, the temperature should
reach ambient values especially for a finite source
length r_. The periodicity of the geometry requires that
the temperature field be periodic in the tangential
direction. Also, the temperature at the disk center must
be unique. At the heat source, either the surface
temperature or the surface heat flux must be specified.
Furthermore, the temperature is assumed to reach
ambient conditions far above the disk.

Based on the above description, the boundary
conditions become

3

éi T{0, ¢, z) = 0 due to radial symmetry, (2a)
o

epr PRt ot
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Due to the periodicity of the problem, the solutions for
more than one diametrical heat source may be ob-
tained for source periods equaling even fractions of 27,
i.e. for sources located at 2n/n, where n = 2,4, 6, ....

The energy equation may be nondimensionalized
using appropriate characteristic lengths, velocity and
temperature scales. In both the radial and axial
directions the distance (v/w)'? characteristic of the
momentum boundary layer thickness, is a suitable
scale, while in the azimuthal direction, the source
period is appropriate. For the velocity and tempera-
ture,wrand (T, — T, }are used. In this work T is the
maximum temperature of the source. Therefore, the
following variables, in addition to the known velocity
functions F, G and H, are introduced:

p=rlw/'? po=rlw/' = ze/v)'?

0=(T =T, /To—T,), Pr="'="2

l//=¢’/7’l, x L

Substituting the above variables in equation (1) we
obtain the dimensionless energy equation for § =
8lp, ¥, )

a8 1 2% &9

1
+ —(1 — p* PrF)
2

o8 Pr_o6 o8

3
LG —prHE==0. (5
T(z.$.2)=T,, (2b) T R
T(r, ¢, 2) = T(r, bz o
. (r. ¢, 2) A(r {¢ + n}, 2) } due to field periodicity, (;2))
35T 42 = 55 10 (6 + 7.2
& =0 when ¢ < ¢, and ¢ > ¢, for all r,
— 4
. ¢.0) } =0  whenr >y, forall ¢ (4a)
;T(r, ¢, 0) specified function of r and ¢ when r < r, or (4a’)
)z
T(r, ¢, 0) specified function of » and ¢ when r < r,. (4a”)

T ¢, 2)=T (4b)

The above boundary conditions are suitable for
diametrical sources of any sector angle ¢, = ¢, — ¢,

2z

z

Fic. 1. Flow and source geometry.

HWMT 25:11 - C

The boundary conditions become

’
7-0(01 ‘//’ V[) = 0’ (63)
ap
6(x, ¥, 1) =0, {6b)
Olp, ¥, n) = Bp, (¥ + 1}, n), (72)
_2*9(0, ¥, 1) =10, {(7b)
&y
a =0 fory <y, andy > ¢,
a()(p, v, O)} =0 for all ¥y when p > p, (82)
SO0 .1 (s Y O) specified  (52)
or
0({0, ps}, (W WY} 0) specified, (8a")
He, ¥, =)= 0. (8b)
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Fic. 2. Singularity circle.

NUMERICAL FORMULATION

The convective diffusion equation for 8lp, ¥, n),
equation (5), is elliptic. Solution of the corresponding
finite difference formulation is achieved by numerical
relaxation techniques. In the axial direction both first
and second derivatives are approximated by central
difference formulae. However, in both the radial and
tangential directions central differences are used for
the second derivatives while first derivatives are re-
placed by backward difference expressions to accom-
modate the strongly convective nature of the flow in
these two directions. This technique, which stresses the
upstream effects, insures the stability of the solution of
the difference equation’s matrix, especially at high Re,
ie. large p.. The instabilities which would arise if a
central difference formula was used for the radial and
tangential convective terms are discussed by Runchal
and Wolfstein [15] and by Runchal [16].

The domain of the temperature field is defined for 0
< p € p, intheradial direction, 0 € ¥ < (1 — Ay)in
the tangential direction ; Ay being the angle between
¥ = 1 and the preceding grid point in the tangential
direction, and 0 < » < 5, in the axial direction. A
small concentric isothermal region is incorporated in
the domain of the numerical solution as shown in Fig.
2. This ‘singularity circle’ acts to diffuse the influence of
the singularity at the disk center as well as to establish
a suitable way for satisfying the symmetry condition
near the disk center for all ¢’s and at all »’s. A
satisfactory value for p , is found by trial to be 15 p,in
all cases, and the value of 1y, is dependent on Pr only
and can be determined by trial solutions or from ref.
[7]. Non-uniform grid spacing is used along each of
the three directions p, ¥ and n. The grid points along
the radial and tangential directions are strategically
located in high temperature gradient regions, i.e. near
the source edges. These locations are continuously
updated to minimize errors in the calculations of
derivatives. It is fortunate in this problem that at high
Re, which corresponds to a large source radius, the
errors are largest in the second derivatives, i.e. in the
conduction terms which are insignificant in that case.
Also, at small Re, the errors are largest in the first
derivatives, i.e. in the convection terms which are small
in this Re range. This behavior tends to improve the
overall accuracy of the results.

The details of the numerical work and error es-
timates are in [17] and will not be discussed here.
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DISCUSSION OF RESULTS

The local heat transfer coefficient # and the local
Nusselt number Nu are obtained from the following
equations:

h(v/w) 2k = [{; 00, v, 0)]/ 0p, v, 0) )
and
Nu = hrik,

= hiv/w)' 2 Re'2/k.

(10)

These properties, which are in general dependent on p
and ¥, are, hereafter, given as y-averaged quantities
over a source arc area representing the region of
influence of the grid points. The average Nusselt
number is denoted by

I—Vvl: = ﬁr/k

The reliability of the program is checked by initially
running the isothermal disk case. This is achieved by
prescribing a constant temperature source with ¢, = 1.
The relation Nu = C Re®* is found to be valid, with
equal to h(v/w)' 2/k. For a particular Pr, C depends
only on h which is constant everywhere on the
isothermal disk surface.

Contrary to the isothermal disk configuration,
where conduction effects do not exist, in the case of a
power law radial temperature profile, § = Bp™, radial
conduction becomes significant at low Re and/or large
m. Table 1 compares h(v/w)' ?/k as given by Hartnett
[&8], who neglected radial conduction, with the present
calculations, The agreement is very good for m <« 2.

For the sector shaped heat source, sketched in Fig. 1,
the results exhibit a substantially different behavior
than in the above test cases. A qualitative description of
this behavior may be explained as follows. At high Re,
where both radial and tangential conduction effects
may be safely ignored, equation (5) can be written as

ol a0 68 RePr . a0
Re--— = RePrFp'— + RePrH — + —— G —
96’12 Rerpap!+ ePr 8r;+ - wa

(11

where p' is a new variable defined as p’ = r/r,. Since
each term contains the Reynolds number and if one
assumes that 8, does not vary with p’, then 8(p, ¥, )
and its derivatives are independent of Re. When the
disk is isothermal, the third term on the RHS of
equation {11) becomes identically zero and solution of

Table 1. Data comparison for an isothermal disk and a
power law temperature distribution, § = Bp™, at Pr = 0.72.

h(vjew)* * m
&
0 1 2
Present work 0.341 0.436 0.519
Hartnett [8] 0.330 0.437 0.524
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Log Nu

log Re

Fic. 3. Qualitative behavior of the various heat transfer mechanisms.

the equation shows that fi(v/w)! ?/k is constant. There-
fore, Nu = C,Re®?, as given by Curve I in Fig. 3. For a
sector shaped source the tangential convection term
will only change the solution of this linear equation
inasmuch as to show a dependence of h(v/w)!2/k on
where i, < ¥ < v, Consequently, if A(v/w)! 2/k is -
averaged, Nu = C,Re®? will be expected, with Cy
dependent on the source geometry and always greater
than C; as given by Curve II in Fig. 3. As the Re
decreases, the assumption that d,;, is constant becomes
invalid. Millsaps and Pohihausen [6] showed that d,,,
increases as the center of the disk is approached. This
behavior is also observed in this study as will be seen
later. The increase in the thermal boundary layer
thickness will reduce the Nu and the overall behavior
of equation (11) may be described by Curve I1I in Fig.
3. At very low Re convective terms may be neglected
altogether and equation (5) becomes a pure con-
duction equation as follows:

106 &% 1 o0 , 0%0

por et i Vigpr =0 12

where n’ and ¢/’ are new variables defined as
no=z/ry,
V' =y = d/d.

The fourth term in equation (12) balances the remain-
ing three. At large p’ the first three terms (order 1/p?)
as well as the axial conduction term are small.

However, the Nu must still be proportional to Re®* in
the limit as 826/0n'> — 0 which represents an isother-
mal disk. At small p’ and ¥, radial and tangential
conduction become significant, thus, considerably

increasing axial conduction as well as the Nu. This
behavior at large and small p’ is given by Curve IV. It
will be shown in the following paragraphs that Curve
IV must merge with Curve V as p’ — 0. The solution
obtained in this work is represented by Curve VI which
is the combined effects of Curves III and IV.

The effects of the sector angle v, at a particular Pr,

on the Nu behavior are shown in Fig. 4. When the
source is at constant temperature, a region near Re =

10 shows a bulge in the Nu vs Re distribution. This

103

102

0!

Nu

Sector source
— — — Constant width
source

o | [ L 1 |
10° o' 0? 03 10 10° 108
Re
FiG. 4. Influence of source width on N*u vs Re relation, Pr = 0.72.
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FiG. 5. Local heat transfer at different locations on the heat source.

signifies the increased axial conduction effects over
those observable at large Re as previously discussed.

The amplitude of the bulge above the line given by Nu
= € Re®? decreases with increasing sector angle /..
However, this bulge may vanish altogether if the radius
of the ‘singularity circle’, which is at constant tempera-
ture, is made large enough. Several check runs indicate

by the size of this circle. The relation Nu = CyRe®? is
valid in the region 0 < Re < 1 where Cy is always
greater than C, and C;y due to the finite nature of the
isothermal region which results in finite radial con-
duction effects at its boundary.

Due to the tangential asymmetry of the temperature
field at high Re the local Nu at the leading edge of the
source (the edge that first meets the oncoming fluid
stream) is higher than that at the trailing edge. The Nu
at the source mid-point is somewhere in between but
closer to the source trailing edge. At low Re and due to
the nearly symmetric temperature profile in the con-
duction dominated region, the Nu at the source mid-
point is lower than its values at both edges as shown in

Fig. 5. This behavior can also be ascertained from the
tangential temperature profiles given in Figs. 7and 8. It
should be noted here that at large Re the local Nu is
linear with Re®®. Therefore, the averaging process
used to present the data of Fig. 4 does not affect the
qualitative behavior of the solution.

Figures 6-9 show typical temperature profiles along
the radial, tangential and axial directions for a con-
stant temperature heat source. In Fig. 6 the radial
temperature distribution is self-explanatory except
near the disk center and at small axial distances.
Strong tangential conduction creates a relatively cool
region which vanishes at higher elevations when, due
to flattened temperature profiles, tangential conduc-
tion becomes insignificant compared with the dom-
inant radial conduction. At these higher elevations,
the profiles monotonically decrease with p.

Tangential temperature profiles in the angle range 0
< ¥ < 1 are shown in Figs. 7 and 8. At high Re, asin
Fig. 7, the temperature profiles are asymmetric as
expected in a highly convective field. Furthermore, the
maximum temperature occurs near the trailing edge of

T I I
10 n:9 e
oo o TRTTTmemao —y
\/ 04 L
o2 7
g e S@CYOr SOUTCE
————— Constant width source
04
08 .
4
02 -
L8 )
o i 1 i
50 0o
P

F1G. 6. Radial temperature profiles for ¢, = 004, y, = 80, Pr = 0.72.
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~-—- Flow direction —J

025

05 Q75

FiG. 7. Tangential temperature profiles at high Re, ¥, = 0.04, 5, = 8.0, Pr = 0.72.

the heat source and goes beyond it at higher elevations.
On the other hand, at low Re, Fig. 8 shows almost
symmetric temperature distribution over the heat
source, but the maximum temperature location still
shifts towards the downstream side of the source,
especially at higher elevations. Figure 9 gives axial
temperature profiles over the source, ¥ = 0.5, and over
the adiabatic surface at yy = 0.25, 0.4, 0.47 and 0.6.

Due to the quasi-steady nature of the problem, the
thermal boundary layer is found to be axisymmetric. It
is interesting to observe that the thermal boundary
layer thickness, J,,, defined as

S = Mo=0.01 (v/w)*?

decays with radius and the rate of decay increases with
decreasing source sector angle y. This behavior is
shown in Fig. 10 and is attributed to the requirement of
tangential heating from a finite size source.

Heat transfer from a heated constant width source
passing through the disk center can be inferred from
sector source data due to the linearity of the problem.

For a given source width, local values of Nu are
deducible from the present calculations by determin-
ing the values of y associated with different radial
locations along the constant width source. We note
here that only near the disk center does the Nu vs Re
relation approach the isothermal disk case since ¥
becomes very large. In Figs. 4-12 the broken lines
represent the heat transfer characteristics of a constant
width diametrical heat source. The relation Nu =
C Re®3 is not generally valid in this non-axisymmetric
case where the source area does not vary with radial
distance as in the cases of an isothermal disk, a disk
with a ring source [14], or a sector-shaped source.
Another important difference is the disappearance of
the conduction bulge near the disk center due to the
large values of i, in that region.

Data at different Pr (not shown here) indicates that
increased Pr produces an increase in C. A similar effect
is produced when i is reduced. Two small values of i/,
0.005 and 0.00006 are calculated with a considerably
increased number of grid points. The rate of con-

08

06 I~

T T
—{ l=-Source boundaries
Re =10

-0
7 v, =004

- Flow direction

F16. 8. Tangential temperature profiles at low Re, ¢, = 004,54, = 8.0, Pr = 0.72
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F16. 9. Axial temperature profiles at high Re, y, = 8.0, Pr = 0.72.

vergence of these runs is very slow and the com-
putation time is excessive. Aside from data for the
small y, configuration, they also provided a good
check on the quantitative and qualitative results of the
original program.

An interesting consequence of the present numerical
solution is the relationship between the heat flux per
unit area, ¢, and the local wall shear stress ,,,. The
dimensionless axial temperature gradient at the wall,
Q, is defined as

oo
Q== {13)
(‘jﬂ in=0
Therefore
g = Qkip/r)AT {14)

where AT = (T, — T, )and p/r = (w/v)''?. Figure 11
shows the variation of @ with the tangential friction
factor, f,, over the entire source radial length. This

friction factor is defined in [1] as follows:

zw
fo= 77— (15)
- dw?r?
2
where
Tye = 0.616d v 2032 r,
dv?
= 0.616—:793. (16)

@, which may be considered as a dimensionless heat
flux, attains a constant value after a large peak near the
center of the disk which is analogous to the bulge
appearing in the Nu vs Re figures. A special feature of
the relationship between g and 7, can be seen if we
consider the heat transfer from the source at a
particular radius on the spinning disk surface. In this
case 1,, and g become proportional to p* and p

T T T
8 -
¥ 1.0 N
L
o 035 4 N
g
3
3 e .
<
S sk 004 -
A P, N
!
3 ! 1 U
0O 50 100 300 400
e

F16. 10. Thermal boundary layer thickness, y, = 80, Pr = 0.72,
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FiG. 11. Correlation between heat flux and friction factor, Pr = 0.72.

according to equations (16) and (14), respectively.
Therefore, the following relationship is valid:

17

Figure 12 shows the behavior of the dimensionless heat
flux per unit area ¢’ as a function of the dimensionless
tangential component of the wall shear stress t,,,. It is
interesting to note that while the heat transfer from the
source before and after the bulge is always pro-
portional to 7, the mechanisms involved are dif-
ferent and so are the constants of proportionality. At
high values of 1, ,, the mechanism is convection, while
at low values it is mostly conduction. In practice, an
additional constant, D, is necessary to model the g vs
7., behavior. This constant is needed, partially, be-
cause of the contribution of natural convection heat
transfer while the disk is at rest. This additional
constant is usually obtained by calibration.

_ 3
q = A1)},

CONCLUSIONS

The heat transfer coefficient from a sector shaped
heat source is shown to be considerably higher than
that obtained for an isothermal disk, but approaches it

as the source sector angle ¢, increases. The relation Nu
= C Re'? is generally valid even at very low Re, with C
varying for different i, Pr and depending on whether
the mechanism is convection or conduction domi-
nated. In a region where both conduction and con-
vection are significant; the region where the bulge
appears, C becomes a complex function of Re. The
thermal boundary layer thickness is shown to decrease
along the radial direction due to tangential heating.
Results for a constant width diametrical source may be
constructed from those of the sector shaped source.

The Nu vs Re relation is not linear in this case and the
heat transfer increases at a faster rate with increasing
Re, especially in the convection dominated region. The
1/3 power law relating the heat flux per unit area to the
local wall shear stress is derived from the present
calculations.
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TRANSFERT THERMIQUE LAMINAIRE GENERALISE A LA SURFACE D'UN DISQUE
TOURNANT

Reésumé—On résoud numeériquement 1'équation d’énergie pour un €coulement laminaire incompressibie
induit par un disque tournant, pour un champ de température tridimensionnel, créé par une source
diamétrale, en forme de secteur, logée d la surface du disque dont le reste est adiabatique. Le chauffage est
supposé suffisamment doux pour ne pas perturber le champ des vitesses. En conséquence, les effets de la
convection naturelle aussi bien que la dissipation visqueuse sont négligés. La technique de surrelaxation
simple est appliquée pour obtenir les solutions pour n’importe quelle distribution radiale ou tangentielle de
température ou de flux surfacique. On présente plusieurs conditions aux limites dont deux pour lesquelles il
existe des solutions exactes. Les résultats obtenus pour différents nombres de Prandt], et différents angles de
source montrent I'existence d’une région a conduction dominante pour les faibles nombres de Reynolds et
une région 4 transport dominant aux grands nombres de Reynolds. On trouve une formule reliant le flux
surfacique local 4 la contrainte tangentielle d la paroi.

ALLGEMEINE BEHANDLUNG DES LAMINAREN WARMEUBERGANGS AN DER
OBERFLACHE EINER ROTIERENDEN SCHEIBE

Zusammenfassung—Es wird die Energiegleichung fiir die laminare inkompressible Stromung an einer
groBen, rotierenden Scheibe numerisch fiir das dreidimensionale Temperaturfeld gelost, welches von einer
diametrischen, sektorférmigen Warmequelle erzeugt wird, die sich an der Oberfliche der sonst adiabaten
Scheibe befindet. Es wird angenommen, daB die Heizung so schwach ist, daB das Geschwindigkeitsfeld nicht
gestort wird. Infolgedessen werden auch die Auswirkungen der freien Konvektion und der zdhigkeitsbeding-
ten Dissipationswirme vernachldssigt. Die Anwendungen einfacher Uberrelaxationsmethoden gentigen, um
Losungen fiir jede angenommene Verteilung der Oberflichentemperatur oder der Warmestromdichte in
radialer und/oder tangentialer Richtung zu erhalten. Verschiedene Randbedingungen werden erdrtert,
insbesondere zwei, bei denen unabhéingige exakte Losungen existieren. Die Ergebnisse fiir verschiedene
Prandtl-Zahlen und Winkel der Warmequelle zeigen, daB bei niedrigen Reynolds-Zahlen eine Zone existiert,
in der Wirmeleitung vorherrscht, wogegen bei groen Reynolds-Zahlen eine Zone mit vorherrschender
Konvektion auftritt. Zusitzlich wird eine Beziehung zwischen dem lokalen Warmestrom an der Oberflache
und den Tangentialschubspannungen an der Wand angegeben.

OBOBUEHHBIN JJAMUHAPHbLIM TEIMNJONEPEHOC OT IMOBEPXHOCTH
BPAIIAIOIIErTOCS JUCKA

AHHOTﬂuHﬂ—ﬂaHO YHUCIACHHOC PECIICHUC YPABHEHHSA 3HEPIUH I JJTAMWHAPHOI'O HECKHUMAEMOIO NOTOKa
XUJAKOCTH, HHAYIIUHPOBAHHOIO 60abINM BpPAWAKOIIUMCS TUCKOM, LTSt TPEXMEPHOT O NOJA TEMNEPATYD,

CO3JaBAEMOr0  JUAMETPpAJIbHbIM

CEKTOPOOOPa3HBIM

HCTOYHHUKOM TeIIa, pAacCnoOJOXKECHHBIM Ha

HOBEPXHOCTH JIMCKA. BCS OCTABLUAACA YaCTh KOTOpPOH sBnsgercs amuabatuueckoit. [lpeanonaraercs,
4TO MOUIHOCTh MCTOYHHKA O4YeHb HeGO Ibllas, TaK YTO BO3MYLIEHHUS INOJSI CKOPOCTEH HE MPOWUCXOMIMT.
CnenosaTenbHo, npenebperaercs xbdekTaMH eCTECTBEHHON KOHBEKLMM M HAarpeBOM 3a cYeT BA3KOH
auccunauud, Jlis nosiydeHust pelieHMH NpH NoOBIX 3a/IlaHHBIX PalHalbHBIX H/HJIM TaHI€HIIHAJbHBIX
pacrpee/leHHi TEMAEPATYPhl OBEPXHOCTH HIM TEMJIOBOrO MOTOKA MOXET MCNOJIBb30BAThCH NPOCTas
METOAMKA BepXHeH pestakcallMi. PaccMOTPEHO HECKOJNILKO [PAHHYHBLIX YCOBUH, B TOM 4HMCie IBa
YCIIOBHSl, /Ul KOTOPBIX CYLHECTBYIOT HE3aBMCHMBIE TOUYHbIE peuleHHs. Pe3yibraTei, MOJy4yeHHBIE MPH
pa3IMYHbIX 3HAYeHHAX yucia TIpaHATAA M YrJoB CEKTOpPA, MOKA3bIBAOT, YTO MPH MAJbIX 3HAYCHUAX
yucrna PeiiHoNMbaca MOXHO BBIAEJIHTL 0DONAcTh € AOMUHMPYIOLIEH TEMJIOMPOBOAHOCTBIO, 4 NPH
BBICOKHMX 3HaueHHsAX 4uciaa Pefinonbaca-obnacts ¢ qoMuHUpylolleit konsekuueid. Taxxe ycTaHOBN€Ha

3aBHCHMOCTb MEXAY JIOKAJbHBIM TEIJIOBBIM ({I0TOKOM Ha

NNOBEPXHOCTH H TAHICHUMUATTbHBIM

HANpPSXXCHUEM CABHIA Ha CTEHKC.



