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Abstract-The energy equation for the laminar incompressible flow induced by a large spinning disk is solved 
numerically for the 3-dim. temperature field generated by a diametrical, sector-shaped heat source located at 
the disk surface which is otherwise adiabatic. The heating is assumed to be sufficiently mild so as not to 
disturb the velocity field. Consequently, natural convection effects, as well as viscous dissipation heating, are 
neglected. The simple overrelaxation technique may be applied to obtain solutions for any specified radial 
and/or tangential distributions of surface temperature or heat flux. Results obtained for various Prandtl 
numbers and source angles indicate the existence of a conduction dominated region at low Reynolds 
numbers and a convection dominated region at high Reynolds numbers. Correlation between the local 

surface heat flux and the tangential wall shear stress is also given. 

NOMENCLATURE 

4 constant; 

B, constant ; 

C, C,, C,,, Clv, Cv, constants; 
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NM, Nu, 

Pr, 
Qt 

TX, 
u, 
u, 
W, 

Z. 

specific heat at constant pressure; 
constant ; 
fluid density; 

dimensionless radial velocity; 
tangential friction factor; 
dimensionless tangential velocity ; 
dimensionless relative tangential velocity ; 
Grashof number ; 
dimensionless axial velocity ; 
local and average heat transfer coef- 
ficients, respectively ; 
fluid thermal conductivity ; 
constant; 

local and average Nusselt numbers, 
respectively ; 
Prandtl number ; 
dimensionless axial temperature gradient 

at the wall; 
heat flux per unit area; 
Reynolds number, or2/v; 

radial coordinate ; 
source outer radius; 
local temperature ; 
characteristic temperature scale of the 
heat source; 
ambient temperature ; 
radial velocity ; 
tangential velocity; 
axial velocity; 
axial coordinate. 

Greek symbols 
thermal diffusivity; 
momentum boundary layer thickness; 
thermal boundary layer thickness; 
represents a small change; 
dimensionless axial coordinate, z(o/v)’ 2 ; 
dimensionless axial coordinate, z/(r,$,); 

dimensionless temperature ; 
absolute viscosity; 
kinematic viscosity ; 
dimensionless radial coordinate, 
r(co/v)l ‘2 ; 
dimensionless radial coordinate, r/r,; 

dimensionless source outer radius: 
tangential coordinate ; 
source sector angle ; 
source leading edge angle; 
source trailing edge angle; 

dimensionless tangential 

44n ; 
dimensionless tangential 

@Ps; 
dimensionless source sector 

coordinate, 

coordinate, 

angle ; 
dimensionless source leading edge angle ; 
dimensionless source trailing edge angle; 
tangential wall shear stress; 
disk angular velocity. 

INTRODUCTION 

HEAT transfer from a rotating body is of major 
importance in the analysis and design of turbo- 
machinery, especially when high temperature fluids are 
present. The rotating disk offers a simplified model 
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with which more complex rotating components can 
be examined. Due to the simple geometrical con- 
figuration, analysis is considerably less involved than if 
the actual components were considered. 

Flow and heat transfer characteristics in the 3-dim. 
boundary layer over a rotating disk have been studied 
extensively. In the present work, a method is presented 
to predict the heat transfer characteristics for a 
generalized heat source at the disk surface. 

The structure of the laminar Aow fieid induced by 
the rotation of a large disk in an infinite incompressible 
fluid has been first established by von Karman [l]. 
Later it was improved numerically by Cochran [2]. 
This structure has been experimentally verified by 
Cham and Head [3], Erian and Tong [4], and others. 

Heat transfer from a rotating disk under laminar 
flow conditions has been studied extensively for an 
isothermal disk surface. Wagner [5] first established 
the heat transfer from an isothermal disk into air (Pr = 
0.72) as Nu = 0.335 Re”-‘. MilIsaps and Pohlhausen 
[6], using different methods, found that Nu = C Re” 5 
for 1 < Pr < 10, where C increases with Prandtl 
number. Sparrow and Gregg [‘7] further examined the 
effect of Prandtl number on heat transfer from an 
isothermal disk, and found that Nu = C Re”-” is valid 
for 0.01 < PP < 10, where the constant also increases 
with Prandtl number. Asymptotic relations were also 
found between C and Pr at very high and very low 
Prandtl numbers. 

Hartnett [8] solved the heat transfer problem from 
a rotating disk with a power law radial temperature 
distribution, (T - T,) = Br”‘, at Pr = 0.72 and found 
that Nu = C Re”,5 with the constant becoming larger 
with increasing m. Davies [9) proposed an approxi- 
mate method to predict heat transfer from a rotating 
disk with arbitrary radial temperature dis~ibution by 
applying the method of sources, i.e. the disk surface is 
regarded as an assembly of concentric circular heat 
sources forming the desired surface temperature distri- 
bution. An integral equation was developed to predict 
the heat transfer coefficient at the disk surface but was 
valid only at large Prandtl numbers when the thermal 
boundary layer was deeply embedded in the momen- 
tum boundary layer. Recently, Jeng, Dewitt and Lee 
I.101 developed a unique analytical method to obtain 
the temperature field and the rate of heat transfer from 
an axisymmetric body in a forced flow field. The 
method was applied to a finite rotating disk with or 
without a free stream velocity and the results agreed 
well with the calculations of Chao and Grief [l l] for 
the case of an isothermal disk. The method can also be 
used for a disk with an axisymmetric step change in 
surface temperature. Radial conduction was neglected 
in all these analytical solutions. 

Experimentally, Kreith, Taylor and Chong [12] 
have fully investigated the heat transfer from an 
isothermal disk and have found that Nu = 0.345 Re” 5 
for Pr = 0.72 under laminar conditions. Popiel and 
Boguslawski [ 131 have determined the combined effect 
of free and forced convection and have found NU = 

0.33 (Gr -t- RJZ*)‘,*~ on an isothermal disk at Pr = 
0.71. Many other experimental works are available. 

Most of the heat transfer work previously accom- 
plished on the rotating disk is for an isothermal 
surface. In most practical applications (a turbine 
wheel, for example) temperature fields are axisym- 
metric but depend on the radial direction. Recently, 
Oehlbeck and Erian [14] solved the axisymmetric line 
source problem. 

The present work accommodates any radial and 
tangential distributions of tem~rature or heat flux at 
the disk surface which are symmetric about a disk 
diameter, and, shows the effects of Prandtl number, 
Reynolds number and conduction on surface heat 
transfer coefficients from sources in the form of sectors 
of varying angles. In addition to its usefulness as a 
generalized 3-dim. problem, wherein heat transfer 
coefficients can be obtained for localized heat sources 
of arbitrary geometry (an image source about a disk 
diameter must exist), direct correlation between the 
local heat transfer coefficient at the source and the wall 
shear stress is also derived. 

ANALYSIS 

The equations of motion for the flow due to a 
rotating disk have been solved exactly by von Karman 
[ 1] and the solution improved by Cochran [2]. Due to 
their consideration of an infinite disk rotating in an 
infinite fluid, similarity functions of the velocity, de- 
pendent on a single similarity variable, were obtained. 
These are defined as F(Q) = u/or, C(q) = o/or, and 
H(~J) = w/(vw)i” where q is the dimensionIess axial 
distance from the disk surface. 

The introduction of a heat source at the disk surface 
will generate a temperature field T(r, #, z) in itsvicinity 
due to convection and conduction. If one ignores 
natural convection effects, significant errors will admit- 
tedly be introduced at high relative source tempera- 
tures and at very low Reynolds numbers, i.e. near the 
disk center. However, in most practical cases, forced 
convection is far more significant than free convection. 
Therefore, we shall ignore natural convection effects in 
this work which results in decoupling of the momen- 
tum and energy equations. As a consequence, the 
velocity functions, F, G and H, remain unchanged by 
the introduction of heat sources at the disk surface. 

Having established the Row field, we now consider 
the energy equation in cylindrical coordinates which 
rotate with the disk for steady, incompressible laminar 
flow with constant fluid properties and neglecting 
viscous dissipation. The equation for the temperature 
is given by 



Generalizatd laminar heat transfer from the surface of a rotating disk 1653 

where 

l)=v-car 

and 

Qkor = G(v) - 1 = G(q). 

In this work the disk surface is assumed adiabatic 
except for a sector-shaped heat source diametrically 
located on the surface as shown in Fig. 1. Therefore, the 
source period is rr. In the radial direction the tempera- 
ture gradient at the disk center must vanish due to 
symmetry, and, at large r, the temperature should 
reach ambient values especially for a finite source 
length rS. The periodicity of the geometry requires that 
the temperature field be periodic in the tangential 
direction. Also, the temperature at the disk center must 
be unique. At the heat source, either the surface 
temperature or the surface heat flux must be specified. 
Furthermore, the temperature is assumed to reach 
ambient conditions far above the disk. 

Based on the above description, the boundary 
conditions become 

$ T(0, #, -_) = 0 due to radial symmetry, (2a) 

7-(X, (6, Z) = T,, (2b) 

Due to the periodicity of the problem, the solutions for 
more than one diametrical heat source may be ob- 
tained for source periods equaling even fractions of 2n, 
i.e. for sources located at 2z/n, where n = 2,4,6, . . . . 

The energy equation may be nondimensionalized 
using appropriate characteristic lengths, velocity and 
temperature scales. In both the radial and axial 
directions the distance (v/w)’ ’ characteristic of the 
momentum boundary layer thickness, is a suitable 
scale, while in the azimuthal direction, the source 
period is appropriate. For the velocity and tempera- 
ture, or and (T, - T ,) are used. In this work T, is the 
maximum temperature of the source. Therefore, the 
following variables, in addition to the known velocity 
functions F, G and H, are introduced: 

p = r(w/v)l ‘, p5 = r,(w/v)i ‘, q = 2(0/v)’ 2, 

II/ = cPl% 0 = (T - T,)/(T, - T,), Pr = f = ‘?. 

Substituting the above variables in equation (1) we 
obtain the dimensionless energy equation for 0 = 

&P, $9 ?) 

7% 4, z) = T(r. {$ + n)., z) (34 

6 T(c 4, z) = $- T(r, (4 + x}, 2) 

due to field periodicity, (3b) 

$ T(r, 4.0) 
when 4 < cfi,, and # > c$~, for all r, 

when r > rs for all 4. 
(4a) 

specified function of r and Cp when r < rs, or 

specified function of r and # when r < r,. 

T(r, #, x) = T,. WI 

The above boundary conditions are suitable for 
diametrical sources of any sector angle 4, = 4S, - $,,. 

(4a’) 

(4a”) 

t2 

FK. 1. Flow and source geometry. 

The boundary conditions become 

$ W7 $9 4) = 0, 

Q(-/_, 9, g) = 0, 

@(P, 4% ‘I) = @(P, (rf+ + 113 ?b 

&WI, $7 17) = 0, 

$ Q(P, $9 0) 
1 

= 0 for li/ < $S, and $ > $,, 

= 0 for all $ when p > ps, 

-5@({0, psi, {$,,, &ii, 0) specified 
?Y 

or 

(6a) 

(6b) 

0) 

G’b) 

(84 

(80 

@(lo, P,), (3/,, $.J, 0) specified, @a”) 

@(p.JI, x)=0. (gb) 
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FIG. 2. Singularity circle. 

NUMERICAL FORMULATION 

The convective diffusion equation for B(p, li/, II), 
equation (5) is elliptic. Solution of the corresponding 
finite difference formulation is achieved by numerical 
relaxation techniques. In the axial direction both first 
and second derivatives are approximated by central 
difference formulae. However, in both the radial and 
tangential directions central differences are used for 
the second derivatives while first derivatives are re- 
placed by backward difference expressions to accom- 
modate the strongly convective nature of the flow in 
these two directions. This technique, which stresses the 
upstream effects, insures the stability of the solution of 
the difference equation’s matrix, especially at high Re, 

i.e. large ps The instabilities which would arise if a 
central difference formula was used for the radial and 
tangential convective terms are discussed by Runchal 
and Wolfstein [15] and by Runchal 1161. 

The domain of the temperature field is defined for 0 
< I_’ < p, in the radial direction,0 < $ < (1 - A$)in 
the tangential direction ; A$ being the angle between 
$ = 1 and the preceding grid point in the tangential 
direction, and 0 < q < ‘1, in the axial direction. A 
small concentric isothermal region is incorporated in 
the domain of the numerical solution as shown in Fig. 
2. This ‘singularity circle’ acts to diffuse the influence of 
the singularity at the disk center as well as to establish 
a suitable way for satisfying the symmetry condition 
near the disk center for all $‘s and at all $s. A 
satisfactory value for p T is found by trial to be 15 ps in 
all cases, and the value of ‘1, is dependent on Pr only 
and can be determined by trial solutions or from ref. 
[7], Non-uniform grid spacing is used along each of 
the three directions 61, t/j and Q The grid points along 
the radial and tangential directions are strategically 
located in high temperature gradient regions, i.e. near 
the source edges. These locations are continuously 
updated to minimize errors in the calculations of 
derivatives. It is fortunate in this problem that at high 
Re, which corresponds to a large source radius, the 
errors are largest in the second derivatives, i.e. in the 
conduction terms which are insignificant in that case. 
Also, at small Re, the errors are largest in the first 
derivatives, i.e. in the convection terms which are small 
in this Re range. This behavior tends to improve the 
overall accuracy of the results. 

The details of the numerical work and error es- 
timates are in [17] and will not be discussed here. 

D1SfUSSIOl% OF RESULTS 

The local heat transfer coefficient h and the local 
Nusselt number Nu are obtained from the following 
equations : 

tg) 

and 

Nu = h rjk. 

= h(v/wf’ ’ Re’ 2/k. 
(10) 

These properties, which are in general dependent on p 
and Q, are, hereafter, given as +-averaged quantities 
over a source arc area representing the region of 
influence of the grid points. The average Nusselt 
number is denoted by 

- 
Nu = h/k. 

The reliability of the program is checked by initially 
running the isothermal disk case. This is achieved by 
prescribingaconstant temperature source with $, = 1. 
The relation NU = C Rr” ’ is found to be valid, with C 
equal to h(r/u) ’ 2/k. For a particular Pr, C depends 
only on iz which is constant everywhere on the 
isothermal disk surface. 

Contrary to the isothermal disk configuration, 
where conduction effects do not exist, in the case of a 
power law radial temperature profile, 0 = Bp”, radial 
conduction becomes significant at low Re and/or large 
m. Table 1 compares h(v/w)’ 2/k as given by Hartnett 
[g], who neglected radial conduction, with the present 
calculations. The agreement is very good for m < 2. 

For the sector shaped heat source, sketched in Fig. 1, 
the results exhibit a substantially different behavior 
than in the above test cases. A qualitative description of 
this behavior may be explained as follows. At high Re, 
where both radial and tangential conduction effects 
may be safely ignored, equation (5) can be written as 

(11) 
where p’ is a new variable defined as p’ = r/r,. Since 
each term contains the Reynolds number and if one 
assumes that Sth does not vary with p’, then fi(p, $, ~1) 
and its derivatives are independent of Re. When the 
disk is isothermal, the third term on the RI-IS of 
equation (11) becomes identically zero and solution of 

Table 1. Data comparison for an isothermal disk and a 
power law temperature distribution, B = Bpm, at Pr = 0.72. 
~-- 

m 

k 

0 1 2 

Present work 0.341 0.436 0.519 
Hartnett [8] 0.330 0.437 0.524 
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log Re 

FIG. 3. Qualitative behavior of the various heat transfer mechanisms, 

the equation shows that h(v/o)’ */k is constant. There- 
- 

fore, Nu = C,Re’.‘, as given by Curve I in Fig. 3. For a 
sector shaped source the tangential convection term 
will only change the solution of this linear equation 
inasmuch as to show a dependence of h(v/w)’ */k on $ 
where $5, < $ < $,,. Consequently, if K(v/w)’ ‘/k is $- 
averaged, Nu = C,,Re”.5 will be expected, with C,, 
dependent on the source geometry and always greater 
than C, as given by Curve II in Fig. 3. As the Re 
decreases, the assumption that a,,, is constant becomes 
invalid. Millsaps and Pohlhausen [6] showed that 6,, 
increases as the center of the disk is approached. This 
behavior is also observed in this study as will be seen 
later. The increase in the thermal boundary layer - 
thickness will reduce the Nu and the overall behavior 
of equation (11) may be described by Curve III in Fig. 
3. At very low Re convective terms may be neglected 
altogether and equation (5) becomes a pure con- 
duction equation as follows: 

1 ae 8% 1 

PI at 
d28 + $2 d2H = 0 (12) --+dp’2+ppjTaq* s aqr* 

where q’ and I+Y are new variables defined as 

The fourth term in equation (12) balances the remain- 
ing three. At large p’ the first three terms (order 1,‘~‘~) 
as well as the axial conduction term are small. - 
However, the Nu must still be proportional to Re’.’ in 
the limit as a*@/a~‘* + 0 which represents an isother- 
mal disk. At small p’ and $, radial and tangential 
conduction become significant, thus, considerably - 
increasing axial conduction as well as the Nu. This 
behavior at large and small p’ is given by Curve IV. It 
will be shown in the following paragraphs that Curve 
IV must merge with Curve V as p’ + 0. The solution 
obtained in this work is represented by Curve VI which 
is the combined effects of Curves III and IV. 

The effects of the sector angle J/, at a particular Pr, - 
on the Nu behavior are shown in Fig. 4. When the 
source is at constant temperature, a region near Re x - 
10 shows a bulge in the Nu vs Re distribution. This 

- Sector source 
- - - Constant width 

source 

Re 

FIG. 4. Influence of source width on G vs Re relation, Pr = 0.72. 
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10-l 0 
IO0 IO’ KY IO3 IO4 IO5 ICE 

Re 

FIG. 5. Local heat transfer at different locations on the heat source. 

signifies the increased axial conduction effects over 
those observable at large Re as previously discussed. - 
The amplitude of the bulge above the line given by Nu 
= C ReO.’ decreases with increasing sector angle j/,. 
However, this bulge may vanish altogether if the radius 
of the ‘singularity circle’, which is at constant tempera- 
ture, is made large enough. Several check runs indicate 

that the Nu vs Re relation at higher Re is not affected -- 
by the size of this circle. The relation Nu = CvReo.5 is 
valid in the region 0 < Re < 1 where C, is always 
greater than C, and CIy due to the finite nature of the 
isothermal region which results in finite radial con- 
duction effects at its boundary. 

Due to the tangentiat asymmetry of the temperature 
field at high Re the local iliu at the leading edge of the 
source (the edge that first meets the oncoming fluid 
stream) is higher than that at the trailing edge. The Nzc 
at the source mid-point is somewhere in between but 
closer to the source trailing edge. At low Re and due to 
the nearly symmetric temperature profile in the con- 
duction dominated region, the Nu at the source mid- 
point is lower than its values at both edges as shown in 

Fig. 5. This behavior can also be ascertained from the 
tangential temperature profiles given in Figs. 7 and 8. It 
should be noted here that at large Re the local NU is 
linear with Re OS Therefore, the averaging process , 
used to present the data of Fig. 4 does not affect the 
qualitative behavior of the solution. 

Figures 6-9 show typical temperature profiles along 
the radial, tangential and axial directions for a con- 
stant temperature heat source. In Fig. 6 the radial 
temperature distribution is self-explanatory except 
near the disk center and at small axial distances. 
Strong tangential conduction creates a relatively cool 
region which vanishes at higher elevations when, due 
to flattened temperature profiles, tangential conduc- 
tion becomes insignific~t compared with the dom- 
inant radial conduction. At these higher elevations, 
the profiles monotonically decrease with p. 

Tangential temperature profiles in the angle range 0 
< II, < 1 are shown in Figs. 7 and 8. At high Re, as in 
Fig. 7, the temperature profiles are asymmetric as 
expected in a highly convective field. Furthermore, the 
maximum temperature occurs near the trailing edge of 

04 L 

- sector source 
----- Constant width source 

00 
1 

FIG. 6. Radial temperature profiles for $, = O.oJ, q , = 8.0, 8% = 0.72. 
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I 
-Source boundaries 

Re = IO4 
J15=004 

-Flow direction 

FIG. 7. Tangential temperature profiles at high Re, $, = 0.04, q I = 8.0, Pr = 0.72. 

the heat source and goes beyond it at higher elevations. 
On the other hand, at low Re, Fig. 8 shows almost 
symmetric temperature distributjon over the heat 
source, but the maximum temperature location still 
shifts towards the downstream side of the source, 
especially at higher elevations. Figure 9 gives axial 
temperature profiles over the source, I) = 0.5, and over 
the adiabatic surface at $ = 0.25, 0.4, 0.47 and 0.6. 

Due to the quasi-steady nature of the problem, the 
thermal boundary layer is found to be axisymmetric. It 
is interesting to observe that the thermal boundary 
layer thickness, &,, defined as 

decays with radius and the rate of decay increases with 
decreasing source sector angle $,. This behavior is 
shown in Fig. lOand isattributed to the requirement of 
tangential heating from a finite size source. 

Heat transfer from a heated constant width source 
passing through the disk center can be inferred from 
sector source data due to the linearity of the problem. 

For a given source width, local values of Nu are 
deducible from the present calculations by determin- 
ing the values of $ associated with different radial 
locations along the constant width source. We note 
here that only near the disk center does the Nu vs Re 
relation approach the isothermal disk case since $ 
becomes very large. In Figs. 4-12 the broken lines 
represent the heat transfer characteristics of a constant 

width diametrical heat source. The relation Nu = 
C Reo5 is not generally valid in this non-axisymmetric 
case where the source area does not vary with radial 
distance as in the cases of an isothermal disk, a disk 
with a ring source [14], or a sector-shaped source. 
Another important difference is the disappearance of 
the conduction buige near the disk center due to the 
large values of $, in that region. 

Data at different Pr (not shown here) indicates that 
increased Pr produces an increase in C. A similar effect 
is produced when I/J, is reduced. Two small values of $, 
0.005 and 0.00006 are calculated with a considerably 
increased number of grid points. The rate of con- 

IO- 

I I 
--l l--Source boundaries 

Re = IO 

0.8 - 

06 - +--Flow directton 

9 

04 - 

FIG. 8. Tangential temperature profiles at low Re, llf, = 0.04, q , = 8.0, Pr = 0.72. 
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02 

0 

Re = Id 
lps =004 

FIG;. 9. Axial temperature profiles at high Re, V, = 8.0, Pr = 0.72. 

vergence of these runs is very slow and the com- friction factor is defined in [I] as follows: 
putation time is excessive. Aside from data for the 
small \Il, configuration, they also provided a good (15) 
check on the quantitative and qualitative results of the 

,& =: +- 

original program. 
z do2r2 

An interesting consequence of the present numerical 
solution is the relationship between the heat flux per 

where 

unit area, q, and the local wall shear stress z,& The rWg = 0.616d v1,‘w3 ‘r, 

dimensionless axial temperature gradient at the wall, 
Q, is defined as = 0.616$ (16) 

Therefore 

(13) Q, which may be considered as a dimensionless heat 
Rux, attains a constant value after a large peak near the 
center of the disk which is analogous to the bulge - 

4 = Q WrHT (14) 
appearing in the Nu vs Re figures. A special feature of 
the relationship between y and tWrh can be seen if we 

where AT = (T, - T, ) and p/r = (w/v)’ “. Figure 11 
.1 

consider the heat transfer from the source at a 
shows the variation of Q with the tangential friction particular radius on the spinning disk surface. In this 
factor, &, over the entire source radial length. This case t,+ and q become proportional to p3 and p 

4- 
PS 
I 

3 I I I I I 
r 0 50 loci 3Gc 400 

P 

FIG. 10. Thermal boundary layer thickness, 1, = 8.0, Pr = 0.72, 



Generalized laminar heat transfer from the surface of a rotating disk 

5 I I I 

- Sector source 
--- Constant width source 

4 - ~‘s=ool 

3- 

Q Source radial boundory 

z- 

1659 

FIG. 11. Correlation between heat flux and friction factor. Pr = 0.72. 

according to equations (16) and (14), respectively. 
Therefore, the following relationship is valid : 

q=/v3 W9’ (17) 

Figure 12 shows the behavior of the dimensionless heat 
flux per unit area q’ as a function of the dimensionless 
tangential component of the wall shear stress t&,. It is 

interesting to note that while the heat transfer from the 
source before and after the bulge is always pro- 
portional to r&3, the mechanisms involved are dif- 
ferent and so are the constants of proportionality. At 

high values of 7&, the mechanism is convection, while 
at low values it is mostly conduction. In practice, an 
additional constant, D, is necessary to model the q vs 
7;$ behavior. This constant is needed, partially, be- 

cause of the contribution of natural convection heat 
transfer while the disk is at rest. This additional 

constant is usually obtained by calibration. 

CONCLUSIONS 

The heat transfer coefficient from a sector shaped 
heat source is shown to be considerably higher than 
that obtained for an isothermal disk, but approaches it 

- 
as the source sector angle 4, increases. The relation Nu 
= C Re’ ” is generally valid even at very low Re, with C 
varying for different $, Pr and depending on whether 

the mechanism is convection or conduction domi- 
nated. In a region where both conduction and con- 
vection are significant; the region where the bulge 

appears, C becomes a complex function of Re. The 
thermal boundary layer thickness is shown to decrease 
along the radial direction due to tangential heating. 
Results for a constant width diametrical source may be 
constructed from those of the sector shaped source. - 
The NM vs Re relation is not linear in this case and the 
heat transfer increases at a faster rate with increasing 
Re, especially in the convection dominated region. The 

l/3 power law relating the heat flux per unit area to the 
local wall shear stress is derived from the present 
calculations. 
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TRANSFERT THERMIQUE LAMINAIRE GENERALISE A LA SURFACE D’UN DISQUE 
TOURNANT 

R&urn&On r&oud numiriquement I’Cquation d’energie pour un dcoulement laminaire incompressible 

induit par un disque tournant, pour un champ de temperature tridimensionnel, crti par une source 

diamitrale, en forme de secteur, logic i la surface du disque dont le reste est adiabatique. Le chauffage est 

suppose suffisamment doux pour ne pas perturber le champ des vitesses. En consCquence, les effets de la 
convection naturelle aussi bien que la dissipation visqueuse sont nlglig&. La technique de surrelaxation 
simple est appliquCe pour obtenir les solutions pour n’importe quelle distribution radiale ou tangentielle de 
tempdrature ou de flux surfacique. On prlsente plusieurs conditions aux limites dont deux pour Iesquelles il 
existe des solutions exactes. Les rdsultats obtenus pour diffirents nombres de Prandtl, et diffirents angles de 
source montrent I’existence d’une region B conduction dominante pour les faibles nombres de Reynolds et 
une rigion i transport dominant aux grands nombres de Reynolds. On trouve une formule reliant le flux 

surfacique local d la contrainte tangentielle I la paroi. 

ALLGEMEINE BEHANDLUNG DES LAMINAREN WARMEUBERCANGS AN DER 
OBERFLACHE EINER ROTIERENDEN SCHEIBE 

Zusammenfassung-Es wird die Energiegleichung fiir die laminare inkompressible Stromung an einer 
grbi3en, rotierenden Scheibe numerisch fiir das dreidimensionale Temperaturfeld gelb;st, welches von einer 
diametrischen, sektorfcrmigen Wtirmequelle erzeugt wird, die sich an der OberflBche der sonst adiabaten 
Scheibe befindet. Es wird angenommen, dal3die Heizung so schwach ist, daRdas Geschwindigkeitsfeld nicht 
gestdrt wird. Infolgedessen werden such die Auswirkungen der freien Konvektion und der ziihigkeitsbeding- 
ten Dissipationswtime vemachlbssigt. Die Anwendungen einfacher Uberrelaxationsmethoden geniigen, urn 
Losungen Mr jede angenommene Verteilung der OberLlPchentemperatur oder der WBrmestromdichte in 
radialer und/oder tangentialer Richtung zu erhalten. Verschiedene Randbedingungen werden eriirtert, 
insbesondere zwei, bei denen unabhiingige exakte LGsungen existieren. Die Ergebnisse fiir verschiedene 
Prandtl-Zahlen und Winkel der WPrmequeIle zeigen, dal3 bei niedrigen Reynolds-Zahlen eine Zone existiert, 
in der Wgrmeleitung vorherrscht, wogegen bei grol3cn Reynolds-Zahlen eine Zone mit vorherrschender 
Konvektion auftritt. ZusPtzlich wird eine Beziehung zwischen dem lokalen Wsrmestrom an der OberflBche 

und den Tangentialschubspannungen an der Wand angegeben. 

0606qEHHbIfi JIAMMHAPHbIti TEfIJIOnEPEHOC OT nOBEPXHOCTM 
BPA~AIOUIETOC~ HMCKA 

AuHo+aum-_AaHo wcnemioe pemeHne ypaBHeHMn sneprMM nns naM&inapnoro HecmAMaeMoro noToKa 
~KU~KOCTM, unnyu~poeannoro 6onbum~ BpauIarouniMcn AACKOM. nnn rpexMepHoro non9 TeMnepaTyp. 

C03IlaBaeMOrO ZUiaMeTpanbHblM CcKTOp006paJHbIM HCTO’(HAKOM Tenna, pdCnOJTOWHHb1M Ha 

noBepxHocTM flAcKa. ac~l ocTaamaacz4 SacTb KOTOPO~~ RanxeTcx anHa6aTnrecKofi. npeanonaraerca, 
YrO MOmHOCTb ACTOYHHKa OqeHb He6o_lbmaa, TaK ‘IT0 BO3MymeHMS nO”R CKOpOCTcti He npOnCXOIIMr. 

CncnOaaTe,,bHO. npese6peraeTcn 3+$cKTaMH CCTeCTBeHHOfi KOHBeKullA U HarpeaOM 3a C’ICT BR3KOfi 

flMccNnaumi. &In nony9eHHn pemeHaii npe n~6brx 3anaH”bIx pansanbsblx H/UJIM TaHreHnManbHbIX 

pacnpenenenuti TeMnepaTypbr noBepxHoc_rri nnH Tennoaoro noToKa MoxeT mznonb3oaaTbca npocTan 

McTOnUKa BcpXHefi peJ,aKCauHH. PaCCMOTpeHO HeCKOnbKO rpaHM’,HbIX yCnOBuii, a TOM WCne nBa 

yC,IOBW,, LUIS KOTOpblX CymeCTByloT HcSaBHCMMble TOYHble pcmcHHa. Pc3yJIbraTbl, uOny’EHHbIc npe 

pa3nMqHbrx 3Haqemiax YHcna npaHflTfla H yrnoB cex-ropa, noKa3bmamT. 9To npM Manbrx 3naqeHMsx 

qHcna PeiiHonbnca MO~HO ablneenr(Tb 06nacrb c noMnHMpy+omeii TennonpoaoaHocTbm. a nps 

ab,coKAx 3Haqemisx Wicna PeBnonbnca -06nacTb c noMRHHpylometi KoHBeKmieA. TaKme ycraHosneHa 

3aBHCMMOCTb MeWy ,IOKaJ,bHb,M TcnJIOablM nOTOKOM “a noBepx”ocTH H TaHreHuMaJIbHbIM 

Hanpnxenueh4 cnaura Ha CTeHKe. 


